

Ex 1. Let R be a ring and let R' be an R -algebra. Let $\mu: R' \otimes_R R' \rightarrow R'$ be the multiplication map, $x \otimes y \mapsto xy$. Note that μ is not injective, and write $I_{R'}$ for $\ker(\mu)$. Show that $I_{R'}$ is generated by the elements of the form $x \otimes 1 - 1 \otimes x$, where x runs on the set of generators of R' as R algebra.

Let now B be an R algebra, and let B', B'' be two B -algebras. Set $C = B' \otimes_R B''$. Prove that 1) $C/I_B C \cong B' \otimes_B B''$ and 2) $B' \otimes_B B'' \cong B \otimes_{B \otimes_R B} C$. For the latter isomorphism, we consider B as $B \otimes_R B$ -algebra via the multiplication map μ .

Ex 2. Show that $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} = 0$ if n, m are coprime.

Ex 3. Let $K = \mathbb{Q}[\sqrt[5]{2}]$. Compute $K \otimes_{\mathbb{Q}} K$.

Ex 4. Let R be a ring, R' an R -algebra and M an R' -module. Write $M' = M \otimes_R R'$. Show that M is a direct factor of M' (construct a morphism from M to M' and from M' to M , and show that the composition $M \rightarrow M' \rightarrow M$ is the identity).

Ex 5. Let R be a local ring, and let M, N be finitely generated R -modules. Prove that if $M \otimes_R N = 0$, then either $M = 0$ or $N = 0$. (Hint: reduce to the case of fields and use Nakayama).

Ex 6. Let R be a ring and let A and B be R -algebras. Write \mathbf{Alg}_R for the category of R -algebras. Consider the functor $F: \mathbf{Alg}_R \rightarrow \mathbf{Set}$ given on objects by

$$C \mapsto \hom_R(A, C) \times \hom_R(B, C)$$

and on morphisms in the obvious way by post-composition. Show that it is representable, and that the representable object is precisely $A \otimes_R B$ as R -algebra.

Ex 7. Let A be an integral domain. An A -module M is called *torsion free* if for any $0 \neq a \in A$ the multiplication map $\mu_a: M \rightarrow M$, $m \mapsto am$ is injective. Show that being torsion free is a local property for M , i.e. that the following are equivalent:

- i) M is torsion free
- ii) $M_{\mathfrak{p}}$ is torsion free for every prime ideal $\mathfrak{p} \subset A$
- iii) $M_{\mathfrak{m}}$ is torsion free for every maximal ideal $\mathfrak{m} \subset A$.

Ex 8. Let A be a ring. Show that being reduced for A is a local property.

Ex 9. Let A be a ring and let S be a multiplicatively closed subset of A . Let M be a finitely generated A -module. Show that $S^{-1}M = 0$ if and only if there exists $s \in S$ such that $sm = 0$ for every $m \in M$.

Ex 10. Let A be a ring, and let $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ be an exact sequence of A -modules. Assume that M'' is finitely generated and flat. Show that the sequence

$$0 \rightarrow M' \otimes_A N \rightarrow M \otimes_A N \rightarrow M'' \otimes_A N \rightarrow 0$$

is exact for every A -module N . (Hint: by choosing a set of generators, write a presentation of M'' as $0 \rightarrow K \rightarrow A^n \rightarrow M'' \rightarrow 0$. Then tensor this sequence with the given sequence and contemplate the resulting diagram. Use the fact that A^n is free, hence flat A -module and the snake lemma to conclude).